Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823548

RESUMO

Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24 % G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.


Assuntos
Mycoplasma mycoides , Mycoplasma , Animais , Genoma Bacteriano , Filogenia , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Mycoplasma/genética , Ruminantes/microbiologia , Genômica , Proteínas de Membrana/genética
2.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486749

RESUMO

Mycoplasma bovis is a major aetiological agent of bovine respiratory disease worldwide. Genome-based analyses are increasingly being used to monitor the genetic diversity and global distribution of M. bovis, complementing existing subtyping schemes based on locus sequencing. However, these analyses have so far provided limited information on the spatiotemporal and population dynamics of circulating subtypes. Here we applied a genome-wide phylodynamic approach to explore the epidemic dynamics of 88 French M. bovis strains collected between 2000 and 2019 in France and belonging to the currently dominant polC subtype 2 (st2). A strong molecular clock signal detected in the genomic data enabled robust phylodynamic inferences, which estimated that the M. bovis st2 population in France is composed of two lineages that successively emerged from independent introductions of international strains. The first lineage appeared around 2000 and supplanted the previously established antimicrobial-susceptible polC subtype 1. The second lineage, which is likely more transmissible, progressively replaced the first M. bovis st2 lineage population from 2005 onward and became predominant after 2010. Analyses also showed a brief decline in this second M. bovis st2 lineage population in around 2011, possibly due to the challenge from the concurrent emergence of M. bovis polC subtype 3 in France. Finally, we identified non-synonymous mutations in genes associated with lineages, which raises prospects for identifying new surveillance molecular markers. A genome-wide phylodynamic approach provides valuable resources for monitoring the evolution and epidemic dynamics of circulating M. bovis subtypes, and may prove critical for developing more effective surveillance systems and disease control strategies.


Assuntos
Genoma Bacteriano , Infecções por Mycoplasma , Mycoplasma bovis , Filogenia , Mycoplasma bovis/genética , Mycoplasma bovis/isolamento & purificação , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , França/epidemiologia , Doenças dos Bovinos/epidemiologia , Animais , Aptidão Genética
3.
BMC Genomics ; 23(1): 603, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986252

RESUMO

BACKGROUND: Mycoplasma (M.) bovis is a major etiological agent of bovine respiratory disease, which is the most economically costly disease of cattle worldwide. Cattle disease surveillance on M. bovis is increasingly using gene-based techniques, such as multilocus sequence typing (MLST), or genome-based techniques such as core genome MLST that both require only partial genomic data. However, accurate up-to-date surveillance also demands complete, circular genomes that can be used as reference to track the evolution of the different lineages. Yet, in France, two of the main subtypes currently circulating still have no representing genome in public databases. Here, to address this gap, we provide and compare three new complete M. bovis genomes obtained from recent clinical isolates that represent major subtypes circulating in France and Europe. RESULTS: Genomes were obtained using a hybrid assembly strategy (Illumina and Nanopore) with fine-tuning of settings and inputs used in the Unicycler assembly pipeline, such as size selection of reads and quality trimming of the FASTQ files. The main characteristics and synteny of the genomes were compared. The three genomes mainly differed by their content in terms of mobile genetic elements, i.e. integrative conjugative elements (ICE) and insertion sequences (IS), a feature that impacts their structure. For instance, strain L15527, representing subtype3 (st3), harbours an exceptionally high number of ICEs, which results in a bigger-sized genome than all those previously described and could be associated with the propensity of st3 to gain and fix mutations through chromosomal transfer mechanisms. In contrast, strain F9160, of st1, is very close to the PG45 type strain isolated in 1961 in the USA, and harbours a huge number of IS. These features may be associated with an evolution towards a host-restricted state or in a "closed" host or environment reservoir until a recent re-emergence. CONCLUSIONS: Whole-genome comparison of the three French M. bovis subtypes provides valuable resources for future studies combining epidemiology, phylogenetic data, and phylodynamic methods.


Assuntos
Doenças dos Bovinos , Mycoplasma bovis , Animais , Bovinos , Doenças dos Bovinos/genética , Elementos de DNA Transponíveis , Genômica , Tipagem de Sequências Multilocus/métodos , Mycoplasma bovis/genética , Filogenia
4.
Vet Microbiol ; 248: 108828, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32905961

RESUMO

Chronic non-progressive pneumonia in small ruminants caused by Mycoplasma (M.) ovipneumoniae is mainly controlled by chemotherapy. In France, during the last decade, a rise in M. ovipneumoniae cases was recorded in both sheep and goats, suggesting a possible emergence. Whether this rise is associated with antimicrobial resistance, as observed in other ruminant Mycoplasma species, has yet to be examined. The aim of the study was to characterize the diversity of M. ovipneumoniae strains circulating in France and assess their antimicrobial resistance, together with the underlying mechanisms, to help find an explanation for the increase in reported cases. The genetic diversity of 56 strains isolated between 2007 and 2018 from sheep and goats was assessed using different subtyping methods. Their susceptibility to six antimicrobial classes was profiled by estimating Minimum Inhibitory Concentrations (MICs) using an optimised agar dilution method. Resistance mechanisms were explored by sequence analysis of rRNA targets. A high genetic diversity of strains was evidenced, with consistent, marked animal-host clustering in the Hsp70 gene and whole genome sequence phylogeny. No clonal evolution could thus account for putative emergence. Apart from florfenicol, MICs were low except for a few isolates with increased values for tetracyclines, macrolides and lincosamides. Hotspot mutations in the target ribosomal gene could explain increased tetracycline MICs. Other mechanisms are suspected for macrolide-lincosamide and florfenicol resistance. The emergence of M. ovipneumoniae is thus not related to any increase in resistance or to a clonal spread. Explanations may lie in breeding practices.


Assuntos
Antibacterianos/farmacologia , Doenças das Cabras/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma ovipneumoniae/efeitos dos fármacos , Mycoplasma ovipneumoniae/genética , Doenças dos Ovinos/microbiologia , Animais , França/epidemiologia , Variação Genética , Doenças das Cabras/epidemiologia , Cabras , Testes de Sensibilidade Microbiana , Infecções por Mycoplasma/epidemiologia , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia
5.
Pathogens ; 9(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708285

RESUMO

Bovine respiratory diseases (BRD) are widespread in veal calf feedlots. Several pathogens are implicated, both viruses and bacteria, one of which, Mycoplasma bovis, is under-researched. This worldwide-distributed bacterium has been shown to be highly resistant in vitro to the main antimicrobials used to treat BRD. Our objective was to monitor the relative prevalence of M. bovis during BRD episodes, its diversity, and its resistance phenotype in relation to antimicrobial use. For this purpose, a two-year longitudinal follow-up of 25 feedlots was organized and 537 nasal swabs were collected on 358 veal calves at their arrival in the lot, at the BRD peak and 4 weeks after collective antimicrobial treatments. The presence of M. bovis was assessed by real-time PCR and culture. The clones isolated were then subtyped (polC subtyping and PFGE analysis), and their susceptibility to five antimicrobials was determined. The course of the disease and the antimicrobials used had no influence on the genetic diversity of the M. bovis strains: The subtype distribution was the same throughout the BRD episode and similar to that already described in France, with a major narrowly-variable subtype circulating, st2. The same conclusion holds for antimicrobial resistance (AMR) phenotypes: All the clones were already multiresistant to the main antimicrobials used (except for fluoroquinolones) prior to any treatments. By contrast, changes of AMR phenotypes could be suspected for Pasteurellaceae in two cases in relation to the treatments registered.

6.
Front Microbiol ; 8: 939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611743

RESUMO

The genus Mycoplasma, a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma (M.) feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, ß-(1→6)-galactan and ß-(1→6)-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas.

7.
Front Microbiol ; 8: 443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373865

RESUMO

Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for their own transfer. However, knowledge of their prevalence and diversity is still severely lacking. In this work, an extensive analysis of 124 genomes from 27 species of Streptococcus reveals 144 IMEs. These IMEs encode either tyrosine or serine integrases. The identification of IME boundaries shows that 141 are specifically integrated in 17 target sites. The IME-encoded relaxases belong to nine superfamilies, among which four are previously unknown in any mobilizable or conjugative element. A total of 118 IMEs are found to encode a non-canonical relaxase related to rolling circle replication initiators (belonging to the four novel families or to MobT). Surprisingly, among these, 83 encode a TcpA protein (i.e., a non-canonical coupling protein (CP) that is more closely related to FtsK than VirD4) that was not previously known to be encoded by mobilizable elements. Phylogenetic analyses reveal not only many integration/excision module replacements but also losses, acquisitions or replacements of TcpA genes between IMEs. This glimpse into the still poorly known world of IMEs reveals that mobilizable elements have a very high prevalence. Their diversity is even greater than expected, with most encoding a CP and/or a non-canonical relaxase.

8.
Front Microbiol ; 6: 1483, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779141

RESUMO

Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.

9.
BMC Genomics ; 15: 1085, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25494835

RESUMO

BACKGROUND: Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3. RESULTS: We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1. CONCLUSIONS: This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.


Assuntos
Álcoois/metabolismo , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tiamina/biossíntese , Alelos , Fermentação , Regulação Fúngica da Expressão Gênica , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
BMC Genomics ; 14: 681, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24094006

RESUMO

BACKGROUND: Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. RESULTS: Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8-16 translocation. CONCLUSIONS: This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear to be of particular importance, probably due to nitrogen starvation. Furthermore, we show that the well characterized 8-16 translocation located in SSU1, which is associated with sulfite resistance, can lead to a partial chromosomic amplification in the progeny of strains that carry it, greatly improving fermentation kinetics. This amplification has been detected among other wine yeasts.


Assuntos
Adaptação Fisiológica/genética , Fermentação/genética , Redes Reguladoras de Genes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/genética , Vinho , Alelos , Segregação de Cromossomos/genética , Cromossomos Fúngicos/genética , Análise por Conglomerados , Hibridização Genômica Comparativa , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ligação Genética , Loci Gênicos , Inativação Metabólica/genética , Mutação/genética , Fenótipo , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
11.
BMC Genomics ; 13: 573, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110365

RESUMO

BACKGROUND: Wine aroma results from the combination of numerous volatile compounds, some produced by yeast and others produced in the grapes and further metabolized by yeast. However, little is known about the consequences of the genetic variation of yeast on the production of these volatile metabolites, or on the metabolic pathways involved in the metabolism of grape compounds. As a tool to decipher how wine aroma develops, we analyzed, under two experimental conditions, the production of 44 compounds by a population of 30 segregants from a cross between a laboratory strain and an industrial strain genotyped at high density. RESULTS: We detected eight genomic regions explaining the diversity concerning 15 compounds, some produced de novo by yeast, such as nerolidol, ethyl esters and phenyl ethanol, and others derived from grape compounds such as citronellol, and cis-rose oxide. In three of these eight regions, we identified genes involved in the phenotype. Hemizygote comparison allowed the attribution of differences in the production of nerolidol and 2-phenyl ethanol to the PDR8 and ABZ1 genes, respectively. Deletion of a PLB2 gene confirmed its involvement in the production of ethyl esters. A comparison of allelic variants of PDR8 and ABZ1 in a set of available sequences revealed that both genes present a higher than expected number of non-synonymous mutations indicating possible balancing selection. CONCLUSIONS: This study illustrates the value of QTL analysis for the analysis of metabolic traits, and in particular the production of wine aromas. It also identifies the particular role of the PDR8 gene in the production of farnesyldiphosphate derivatives, of ABZ1 in the production of numerous compounds and of PLB2 in ethyl ester synthesis. This work also provides a basis for elucidating the metabolism of various grape compounds, such as citronellol and cis-rose oxide.


Assuntos
Compostos Orgânicos/metabolismo , Locos de Características Quantitativas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo , Vinho/microbiologia , Monoterpenos Acíclicos , Alelos , Mapeamento Cromossômico , Fermentação , Deleção de Genes , Variação Genética , Redes e Vias Metabólicas , Monoterpenos/metabolismo , Odorantes , Compostos Orgânicos/química , Sesquiterpenos/metabolismo , Vitis/química
12.
G3 (Bethesda) ; 1(4): 263-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22384338

RESUMO

The genetic basis of the phenotypic diversity of yeast is still poorly understood. Wine yeast strains have specific abilities to grow and ferment under stressful conditions compared with other strains, but the genetic basis underlying these traits is unknown. Understanding how sequence variation influences such phenotypes is a major challenge to address adaptation mechanisms of wine yeast. We aimed to identify the genetic basis of fermentation traits and gain insight into their relationships with variations in gene expression among yeast strains. We combined fermentation trait QTL mapping and expression profiling of fermenting cells in a segregating population from a cross between a wine yeast derivative and a laboratory strain. We report the identification of QTL for various fermentation traits (fermentation rates, nitrogen utilization, metabolites production) as well as expression QTL (eQTL). We found that many transcripts mapped to several eQTL hotspots and that two of them overlapped with QTL for fermentation traits. A QTL controlling the maximal fermentation rate and nitrogen utilization overlapping with an eQTL hotspot was dissected. We functionally demonstrated that an allele of the ABZ1 gene, localized in the hotspot and involved in p-aminobenzoate biosynthesis, controls the fermentation rate through modulation of nitrogen utilization. Our data suggest that the laboratory strain harbors a defective ABZ1 allele, which triggers strong metabolic and physiological alterations responsible for the generation of the eQTL hotspot. They also suggest that a number of gene expression differences result from some alleles that trigger major physiological disturbances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...